The integrated intensities were measured using a modified version (Belletti, Ugozzoli, Cantoni \& Pasquinelli, 1979) of the Lehmann \& Larsen (1974) peak-profile analysis procedure. Corrections were applied for Lorentz and polarization effects but not for absorption. Extinction was considered according to Zachariasen (1963) $\left[g=4.06(1) \times 10^{-8}\right]$.

The structure was determined by direct methods using SHELXS86 and refined by anisotropic full-matrix least squares on F using SHELX76. The H atoms were localized from a final difference Fourier synthesis and refined isotropically.

The atom-atom non-bonded potential-energy calculations were carried out using ROTENER (Nardelli, 1988) and the atomic charges calculated by the iterative partial equalization of orbital electronegativity method of Gasteiger \& Marsili (1980) using ATOMCHAR (Nardelli, 1991).

Throughout this paper, the averaged values are means weighted according to the reciprocals of the variances and the corresponding e.s.d.'s are the largest values of the 'external' and 'internal' standard deviations (Topping, 1960).

The calculations were performed using the ENCORE-GOULD-POWERNODE 6040 computer at the 'Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma)'.

The authors gratefully acknowledge financial support from the European Economic Community under contract N.SC1*-CT91-0657 (SSMA).

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry, together with the results of the Cambridge Structural Database search and difference van der Waals energy profiles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55178 (19 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1005]

References

Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.

Belletti, D., Ugozzoli, F., Cantoni, A. \& Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens-AED con Sistema General Automation Jumbo 220. Internal Report 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Benassi, R., Ianelli, S., Nardelli, M. \& Taddei, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1381-1386.
Carré, M.-C., Jamart-Grégoire, B., Geoffroy, P., Caubère, P., Ianelli, S. \& Nardelli, M. (1988). Tetrahedron, 44, 127-137.
Caubère, P. (1974). Acc. Chem. Res. 7, 301-308.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-134.
Dunitz, J. D. \& White, D. N. J. (1973). Acta Cryst. A29, 93-94.
Gasteiger, J. \& Marsili, M. (1980). Tetrahedron, 36, 3219-3228.
Ianelli, S., Nardelli, M., Belletti, D., Jamart-Grégoire, B., Carré, M.-C., \& Caubère, P. (1989). Acta Cryst. C45, 1534-1541.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1988). ROTENER. A Fortran routine for calculating nonbonded potential energy. Univ. of Parma, Italy.
Nardelli, M. (1991). ATOMCHAR. A Fortran routine for calculating the atomic charges in a molecule. Univ. of Parma, Italy.

Nardelli, M. \& Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Topping, H. (1960). Errors of Observation and their Treatment, p. 91. London: Chapman \& Hall.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Trueblood, K. N. (1984). THMV. Univ. of California, Los Angeles, USA. Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1992). C48, 1730-1733

Structure and Conformation of cis,anti,cis$4 \mathrm{~b}, 4 \mathrm{c}, 8 \mathrm{~b}, 9,10,10 \mathrm{a}-\mathrm{Hexahydro-4b-hydroxy-}$ benzo[3,4]cyclobuta[1,2-a]biphenylene-4carbaldehyde

Sandra Ianell and Mario Nardellí ${ }^{\star}$

Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze 78, I-43100 Parma, Italy

Daniele Belletti
Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio CNR per la Strutturistica Diffrattometrica, Viale delle Scienze 78, I-43100 Parma, Italy

Brigitte Jamart-Grégore, M. Abdellah Zouaou and Paul Caubère

Laboratoire de Chimie Organique I, UA CNRS 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-LesNancy CEDEX, France
(Received 3 March 1992; accepted 13 May 1992)

Abstract

The title compound was prepared as part of a study of polyphenylene derivatives obtained by arynic condensation in the presence of complex bases. X-ray analysis shows that the two benzocyclobutene moieties have an anti arrangement. The hydroxyl group and the H atoms are cis at each junction and trans for one junction with respect to the other. The two pseudosymmetrical parts of the core of the molecule show the same geometry in spite of having different substitution. Previously observed deformations for the benzene moiety fused with the cyclobutene ring and lengthening of the cyclobutane Csp ${ }^{3}$ - Csp ${ }^{3}$ bond are confirmed. The orientations of the formyl and hydroxyl groups are discussed.

Comment

Polyphenylene derivatives are very interesting molecules from both the theoretical point of view and with regard to their potential use as starting materials for further syntheses or in devising new electronic materials (Dierck \& Vollhardt, 1986). We have previously shown that arynic condensation of appropriate ketone enolates leads easily to benzocyclobutene derivatives which could themselves be used as starting materials for the synthesis of triphenylene derivatives (Zouaoui, Mouaddib, Jamart-Grégoire, Ianelli, Nardelli \& Caubère, 1991). Moreover, we also showed that some di- or tetrahydrobiphenylenes perturb DNA replication (Zouaoui, Mouaddib, Jamart-Grégoire, Caubère, Mougin, Caubère \& Branlant, 1989). This previously unknown property has opened up a range of new applications.

In order to introduce functional groups on one of the aromatic rings, we performed the condensations shown below. One of the interesting aspects of the product obtained (7) is its aldehydic function which may be easily transformed into a number of other functional groups.

Compound (3) was obtained in the manner previously described by Carré, Grégoire \& Caubère (1984). Its reduction by lithium in liquid NH_{3}, followed if necessary by oxidation of (5), easily led to (4). Arynic condensation of the enolate (4) with (6) in the presence of a complex base (Caubère, 1991) led to (7), whose stereochemistry was not easy to establish by usual physical methods. The structure, as described in this paper, was established by X-ray diffraction.

An ORTEP drawing of the molecule (Fig. 1) shows that it consists of two benzocyclobutene systems joined together, directly and through a dimethylene bridge, with an anti configuration. The H atoms and the hydroxyl group at the junctions are cis at each junction and those of one junction are trans with respect to those of the other. The torsion angles (Table 2) indicate that the bonds at C8 and C13 are synperiplanar (eclipsed) with respect to those at C9 and C12 respectively. The configurations at these chiral atoms are $R(\mathrm{C} 8), R(\mathrm{C} 9), S(\mathrm{C} 12), R(\mathrm{C} 13)$. The enantiomeric molecule which has the opposite configurations at these atoms is also present in the crystal, the space group being centrosymmetric.

Fig. 1. ORTEP drawing of the molecule with ellipsoids at 50% probability.

From the values of bond distances and angles (Table 2), it appears that the two benzocyclobutene moieties are not significantly different and that deformations caused by the fusion of the benzene and cyclobutene rings are in agreement with those previously observed (Allen, 1981; Ianelli, Nardelli, Belletti, Geoffroy, Carré, Mouaddib \& Caubère, 1990; Benassi, Ianelli, Nardelli \& Taddei, 1991). In particular, the averaged data given in Table 3 should be considered. These data indicate that the most important distortions are the narrowing of the benzo β angle and the lengthening of the Csp ${ }^{3}-\mathrm{Csp}{ }^{3}$ bond in the cyclobutene ring. This lengthening is responsible for the asymmetry of the cyclobutene endocyclic angles ε and ζ as previously observed by Ianelli, Nardelli, Belletti, Jamart-Grégoire, Mouaddib \& Caubère (1992a,b).

The two rings of the benzocyclobutene system are nearly coplanar in both moieties, the dihedral angles being $\angle(\mathrm{C} 2, \ldots \mathrm{C} 7)(\mathrm{C} 6, \ldots \mathrm{C} 9)=3.7(1)^{\circ}, \angle(\mathrm{C} 14, \ldots \mathrm{C} 19)(\mathrm{C} 12, \ldots$ $\mathrm{C} 15)=1.5(1)^{\circ}$. These two moieties, joined together by the $\mathrm{C} 8-\mathrm{C} 13$ bond and the $\mathrm{C} 10-\mathrm{C} 11$ dimethylene bridge, form a central puckered cyclohexane ring with a total puckering amplitude (Cremer \& Pople, 1975) of $\mathrm{Q}_{T}=$ 0.516 (3) \AA and a half-chair conformation with a pseudo twofold axis running along the midpoints of the C8C 13 and $\mathrm{C} 10-\mathrm{C} 11$ bonds [minimum asymmetry displacement parameter $\mathrm{ADP}=D_{2}(\mathrm{C} 8-\mathrm{C} 13)=0.026(1)$; Nardelli, 1983b].
The low value of the $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ torsion angle $\left[-5.8(4)^{\circ}\right]$ indicates that the orientation of the formyl group is mainly determined by its tendency to exhibit some π conjugation with the benzene ring. This is confirmed by the potential-energy profiles, calculated for the rotation of the group about the $\mathrm{C} 1-\mathrm{C} 2$ bond, which indicate that electronic effects must be present. The importance of these effects can be understood by considering the fact that, in its vapour phase, benzaldehyde has a planar ground state and a twofold barrier to internal rotation between 19 and $23 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Penner, George \& Block, 1987).

Difference potential-energy profiles were calculated in the same way for the hydroxyl group by rotating it about the $\mathrm{C} 8-\mathrm{O} 2$ bond. These indicate that the orientation of the hydroxyl group in the crystal is mainly determined
by the intermolecular hydrogen-bonding interaction. The relevant geometrical parameters of this bond, which is the main influence on molecular packing in the crystal, are $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} 0.78(3), \mathrm{O} 2 \cdots \mathrm{Ol}^{1} 2.827(3), \mathrm{H} 2 \mathrm{O} \cdots \mathrm{Ol}^{1}$ $2.08(3) \AA$ and $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots 1^{\mathrm{i}} 161(3)^{\circ}$ where $\mathrm{i}=1-x$, $\frac{1}{2}+y, \frac{1}{2}-z$.

The anisotropic atomic displacement coefficients have been analysed, using THMV (Trueblood, 1984), in terms of the LST rigid-body model (Schomaker \& Trueblood, 1968), taking into account the internal motions in the oneparameter model approximation (Dunitz \& White, 1973; Trueblood, 1978). The results (Table 4) show that internal motions have some relevance; the atoms of the rings librate about directions perpendicular to the mean planes through the rings. The largest anisotropic thermal motion (or statistical disorder) is observed in the aldehydic O atom for which the ratio between the principal axes of the displacement ellipsoid $r_{\max } / r_{\min }$ is 3.12 ; for the other atoms, this ratio is in the range 1.44-2.73. Bond-distance corrections do not exceed 2σ and are therefore not included in Table 2.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

	x		z	$U_{\text {eq }}$
01	0.4950 (1)	-0.1726 (3)	0.1067 (1)	0.0672 (8)
02	0.3900 (1)	-0.0078 (3)	0.3960 (1)	0.0487 (6)
C1	0.4539 (2)	-0.1166 (4)	0.1698 (2)	0.0499 (9)
C2	0.3992 (2)	0.0623 (4)	0.1714 (1)	0.0411 (8)
C3	0.3964 (2)	0.1952 (4)	0.1016 (2)	0.0515 (9)
C4	0.3416 (2)	0.3616 (5)	0.1038 (2)	0.0600 (11)
C5	0.2878 (2)	0.4071 (4)	0.1760 (2)	0.0590 (10)
C6	0.2936 (2)	0.2790 (4)	0.2455 (2)	0.0458 (8)
C7	0.3448 (2)	0.1103 (4)	0.2422 (1)	0.0391 (8)
C8	0.3140 (2)	0.0366 (4)	0.3310 (1)	0.0383 (8)
C9	0.2611 (2)	0.2402 (4)	0.3388 (2)	0.0479 (8)
C10	0.1516 (2)	0.2407 (5)	0.3496 (2)	0.0633 (12)
C11	0.0987 (2)	0.1012 (5)	0.2857 (2)	0.0652 (12)
C12	0.1334 (2)	-0.1035 (5)	0.3005 (2)	0.0509 (9)
C13	0.2476 (2)	-0.1375 (4)	0.3248 (2)	0.0409 (8)
C14	0.2179 (2)	-0.2190 (4)	0.4121 (2)	0.0412 (8)
C15	0.1195 (2)	-0.1884 (4)	0.3917 (2)	0.0478 (9)
C16	0.0502 (2)	-0.2357 (5)	0.4496 (2)	0.0608 (11)
C17	0.0863 (2)	-0.3198 (5)	0.5292 (2)	0.0634 (11)
C18	0.1850 (2)	-0.3548 (5)	0.5483 (2)	0.0592 (11)
C19	0.2542 (2)	-0.3047 (4)	0.4898 (2)	0.0504 (8)

Table 2. Comparison of bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

				Av.
$\mathrm{Ol}-\mathrm{Cl}$	1.209 (3)			-
O2-C8	1.413 (3)			
$\mathrm{C} 1-\mathrm{C} 2$	1.459 (4)			-
C8-C13	1.519 (4)	C10-C11	1.519 (5)	1.519 (3)
C9-Cl0	1.526 (4)	C11-C12	1.520 (5)	1.524 (3)
C2-C3	1.404 (4)	C18-C19	1.391 (4)	1.398 (6)
C4-C5	1.400 (4)	C16-C17	1.396 (4)	1.398 (3)
C3-C4	1.387 (4)	C17-C18	1.386 (4)	1.386 (3)
C2-C7	1.393 (3)	C14-C19	1.378 (4)	1.388 (7)
C5-C6	1.378 (4)	C15-C16	1.381 (4)	1.380 (3)
C6-C7	1.377 (4)	C14-C15	1.380 (3)	1.379 (2)
C6--C9	1.537 (4)	C12-C15	1.527 (4)	1.532 (5)
C7-C8	1.527 (3)	C13-C14	1.522 (3)	1.524 (2)
C8-C9	1.607 (4)	$\mathrm{Cl} 2-\mathrm{Cl} 3$	1.601 (3)	1.603 (3)
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$	124.2 (2)			-
O2-C8-C7	116.5 (2)			-
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	117.2 (2)			-
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{Cl} 3$	105.9 (2)			
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	122.6 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	121.8 (2)	122.2 (4)
C3-C2-C7	115.7 (2)	C14-C19-C18	115.5 (3)	115.6 (2)
C4-C5-C6	116.4 (3)	C15-C16-C17	115.5 (3)	116.0 (4)
C2-C3-C4	121.4 (2)	C17-C18-C19	121.8 (3)	121.5 (2)
C3-C4-C5	121.9 (3)	C16-C17-C18	122.2 (3)	122.0 (2)
C5-C6-C7	121.9 (2)	C14-C15-C16	122.1 (3)	122.0 (2)
C2-C7-C6	122.7 (2)	C15-C14-C19	122.8 (2)	122.8 (1)
C2-C7-C8	142.7 (2)	C13-C14-C19	143.1 (2)	142.9 (2)
C5-C6--C9	144.3 (3)	$\mathrm{C12-C15-C16}$	143.6 (2)	143.8 (3)
C7-C6-C9	93.8 (2)	$\mathrm{Cl2}-\mathrm{Cl5}-\mathrm{Cl} 4$	94.2 (2)	94.0 (2)
C6-C7-C8	94.6 (2)	C13-C14-C15	94.1 (2)	94.4 (2)
C7-C8-C9	85.6 (2)	$\mathrm{C12-C13-C14}$	86.1 (2)	85.8 (2)
C6-C9-C8	85.6 (2)	$\mathrm{C13-C12-C15}$	85.6 (2)	85.6 (1)
C7-C8-C13	114.9 (2)	C8--C13-C14	116.5 (2)	-
C9-C8-C13	116.1 (2)	C8-C13-C12	117.9 (2)	-
C8-C9-C10	117.7 (2)	$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 3$	117.7 (2)	117.7 (1)
C9- $\mathrm{Cl} 10-\mathrm{Cl} 1$	111.0 (3)	$\mathrm{C10}-\mathrm{Cl1}-\mathrm{Cl} 2$	112.4 (3)	111.7 (7)
C6-C9-C10	117.1 (2)	$\mathrm{Cl1-Cl2-C15}$	116.1 (3)	116.8 (5)
C7-C8-C13-C14	178.1 (2)	C9-Cl0-C1	- ${ }^{1} 2$	60.6 (3)
$\mathrm{C} 6-\mathrm{C} 9-\mathrm{Cl} 0-\mathrm{Cl}$	55.0 (4)	$\mathrm{ClO}-\mathrm{Cll}-\mathrm{C}$	-C15	60.7 (3)
C7-C8-C9-C6	3.8 (2)	C15-Cl2-C	-C14	0.4 (2)
C7-C8-C9-H9	-110 (2)	$\mathrm{H} 12-\mathrm{Cl2}-$	-C14	-113(2)
C13-C8-C9-Cl0	6.5 (3)	$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{C}$	- C 8	-0.4 (4)
O2-C8-C9-H9	7 (2)	$\mathrm{H} 12-\mathrm{Cl2}-\mathrm{C}$	$-\mathrm{H} 13$	0.3 (22)

Table 3. Averaged bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for benzocyclobutenes

	Compound (7)	Literature*	Calc. \dagger
a	$1.379(2)$	$1.383(3)$	1.386
b	$1.381(3)$	$1.389(1)$	1.371
c	$1.398(3)$	$1.395(2)$	1.396
d	$1.386(3)$	$1.391(3)$	1.387
e	$1.603(3)$	$1.598(4)$	1.599
α	$122.6(3)$	$122.5(1)$	122.2
β	$115.7(2)$	$115.3(1)$	116.2
γ	$121.8(2)$	$122.1(1)$	121.5
δ	$143.4(4)$	$143.4(1)$	-
ε	$94.2(2)$	$94.1(1)$	94.0
ζ	$85.6(1)$	$85.8(1)$	86.0

* From 27 molecules retrieved from the Cambridge Structural Database (January 1992 release; Allen et al., 1991) and including data from Ianelli et al. (1992a,b).
\dagger From MO ab initio calculations at the 3-21G level (Benassi et al., 1991).
Table 4. Analysis of the anisotropic atomic displacements in terms of LST rigid-body motion and internal motions
$\mathrm{C} 1 Z$ is the centroid of the $\mathrm{C} 2, . . \mathrm{C} 7$ ring, $P 1 Z$ is the normal to the $\mathrm{C} 2, \ldots \mathrm{C} 7$ ring at $\mathrm{C} 1 Z, \mathrm{C} 2 Z$ is the centroid of the $\mathrm{C} 8, \ldots \mathrm{C} 13$ ring, $P 2 Z$ is the normal to the $\mathrm{C} 8, \ldots \mathrm{C} 13$ ring at $\mathrm{C} 2 Z, \mathrm{C} 3 Z$ is the centroid of the $\mathrm{C} 14, \ldots \mathrm{C} 19$ ring and $P 3 Z$ is the normal to the $\mathrm{C} 14, \ldots \mathrm{C} 19$ ring at $\mathrm{C} 3 Z . \Delta$ is the mean difference of the mean-square vibrational amplitudes along the interatomic directions for all pairs of atoms, $\Delta U=U_{i j}$ (obs.) $-U_{i j}$ (calc.), $R_{w U}=\left[\Sigma(w \Delta U)^{2} / \Sigma\left(w U_{o}\right)^{2}\right]^{1 / 2}, \sigma(w \Delta U)=\left[\Sigma(w \Delta U)^{2} / \Sigma w^{2}\right]^{1 / 2}$, $\sigma\left(U_{o}\right)$ is the mean e.s.d of U_{o} 's.

Treatment	$\Delta \times 10^{4}(\AA)$	$\sigma(w \Delta U) \times 10^{4}$	$\sigma\left(U_{0}\right) \times 10^{4}$	$R_{w U}$
Rigid-body				0.102
	$30(41)$		17	
Internal motions		25		0.078
	Group	Libration	Libration	
	librating	along	amplitude (${ }^{\circ}$)	
	$\mathrm{C} 2, \ldots \mathrm{C} 7$	$\mathrm{C} 1 Z-P 1 Z$	$2.1(8)$	
	$\mathrm{CC}, \ldots \mathrm{Cl} 3$	$\mathrm{C} 2 Z-P 2 Z$	$2.9(5)$	
	$\mathrm{C} 14, \ldots \mathrm{C} 19$	$\mathrm{C} 3 Z-P 3 Z$	$3.2(6)$	
	O 1	$\mathrm{C} 1-\mathrm{C} 2$	$4.9(22)$	
	O 2	$\mathrm{C} 8-\mathrm{C} 9$	$3.3(10)$	

The integrated intensities were obtained by a modified version (Belletti, Ugozzoli, Cantoni \& Pasquinelli, 1979) of the Lehmann \& Larsen (1974) peak-profile analysis procedure. All reflections were corrected for Lorentz and polarization effects but not for absorption. Correction for extinction was carried out according to Zachariasen (1963) $\left[g=5.73(2) \times 10^{-8}\right]$.
The structure was determined by direct methods using SHELXS86 (Sheldrick, 1986) and refined by anisotropic fullmatrix least squares on F, using SHELX76 (Sheldrick, 1976). The H atoms were located by difference Fourier synthesis and refined isotropically.

Throughout this paper, the averaged values are means weighted according to the reciprocals of the variances and the corresponding e.s.d.'s are the largest of the 'external' and 'internal' standard deviations (Topping, 1960).
The calculations were carried out on the ENCORE-GOULDPOWERNODE 6040 and ENCORE 91 computers of the 'Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma)'. In addition to the quoted programs, LQPARM
(Nardelli \& Mangia, 1984), PARST (Nardelli, 1983a) and ORTEP (Johnson, 1965) have been used.

The authors gratefully acknowledge financial support from the European Economic Community under grant N.SCI000657.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry, together with principal axes of thermal ellipsoids, statistics for the benzocyclic parameters, difference van der Waals energy profiles and results of the Cambridge Database search, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55191 (25 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1010]

References

Allen, F. H. (1981). Acta Cryst. B37, 900-906.
Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.

Belletti, D., Ugozzoli, F., Cantoni, A. \& Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens-AED con Sistema General Automation Jumbo 220. Internal Report 1- 3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Benassi, R., Ianelli, S., Nardelli, M. \& Taddei, F. (1991). J. Chem. Soc. Perkin. Trans. 2, pp. 1381-1386.
Carré, M.-C., Grégoire, B. \& Caubère, P. (1984). J. Org. Chem. 49, 2050-2052.
Caubère, P. (1991). Rev. Heteroat. Chem. 4, 78-139.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dierck R. \& Vollhardt, K. P. C. (1986). Angew. Chem. Int. Ed. Engl. 25, 266-268.
Dunitz, J. D. \& White, D. N. J. (1973). Acta Cryst. A29, 93-94.
Ianelli, S., Nardelli, M., Belletti, D., Geoffroy, P., Carré, M.-C., Mouaddib, A. \& Caubère, P. (1990). Acta Cryst. C46, 1318-1324.
Ianelli, S., Nardelli, M., Belletti, D., Jamart-Grégoire, B., Mouaddib, A. \& Caubère, P. (1992a). Acta Cryst. B48, 178-185.
Ianelli, S., Nardelli, M., Belletti, D., Jamart-Grégoire, B., Mouaddib, A. \& Caubère, P. (1992b). Acta Cryst. B48. In the press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
Nardelli, M. (1983a). Comput. Chem. 7, 95-98.
Nardelli, M. (1983b). Acta Cryst. C39, 1141-1142.
Nardelli, M. \& Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
Penner, G. H., George, P. \& Block, C. W. (1987). J. Mol. Struct. (Theochem), 152, 201-212.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Topping, H. (1960). Errors of Observation and their Treatment, p. 91. London: Chapman \& Hall.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Trueblood, K. N. (1984). THMV. Program for thermal motion analysis. Univ. of California, Los Angeles, USA.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.
Zouaoui, A. M., Mouaddib, A., Jamart-Grégoire, B., Caubère, P., Mougin, A., Caubère, C. \& Branlant, C. (1989). Journées du CEIMED, Octobre, Nancy, France.
Zouaoui, A. M., Mouaddib, A., Jamart-Grégoire, B., Ianelli, S., Nardelli, M. \& Caubère, P. (1991). J. Org. Chem. 56, 4078-4081.

